

General Certificate of Education Advanced Subsidiary Examination January 2010

Mathematics

MPC1

Unit Pure Core 1

Monday 11 January 2010 9.00 am to 10.30 am

For this paper you must have:

• an 8-page answer book

• the blue AQA booklet of formulae and statistical tables.

You must **not** use a calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The **Examining Body** for this paper is AQA. The **Paper Reference** is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is **not** permitted.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

PMT

1	The polynomial	$\mathbf{p}(x)$	is given by $p(x) = x^3 - 13x - 12$.	
---	----------------	-----------------	---------------------------------------	--

(a)	Use the Factor Theorem to show that $x + 3$ is a factor of $p(x)$.	(2 marks)

- (b) Express p(x) as the product of three linear factors. (3 marks)
- **2** The triangle *ABC* has vertices A(1, 3), B(3, 7) and C(-1, 9).

(a)	(i)	Find the gradient of AB.	(2 marks)
	(ii)	Hence show that angle ABC is a right angle.	(2 marks)
(b)	(i)	Find the coordinates of M , the mid-point of AC .	(2 marks)
	(ii)	Show that the lengths of AB and BC are equal.	(3 marks)
	(iii)	Hence find an equation of the line of symmetry of the triangle ABC.	(3 marks)

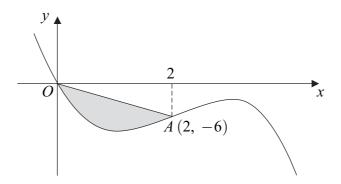
3 The depth of water, y metres, in a tank after time t hours is given by

$$y = \frac{1}{8}t^4 - 2t^2 + 4t$$
, $0 \le t \le 4$

(a) Find:

(i)
$$\frac{\mathrm{d}y}{\mathrm{d}t}$$
; (3 marks)

(ii)
$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$$
. (2 marks)


- (b) Verify that y has a stationary value when t = 2 and determine whether it is a maximum value or a minimum value. (4 marks)
- (c) (i) Find the rate of change of the depth of water, in metres per hour, when t = 1. (2 marks)
 - (ii) Hence determine, with a reason, whether the depth of water is increasing or decreasing when t = 1. (1 mark)

PMT

4 (a) Show that
$$\frac{\sqrt{50} + \sqrt{18}}{\sqrt{8}}$$
 is an integer and find its value. (3 marks)

(b) Express
$$\frac{2\sqrt{7}-1}{2\sqrt{7}+5}$$
 in the form $m + n\sqrt{7}$, where *m* and *n* are integers. (4 marks)

- 5 (a) Express (x-5)(x-3)+2 in the form $(x-p)^2+q$, where p and q are integers. (3 marks)
 - (b) (i) Sketch the graph of y = (x 5)(x 3) + 2, stating the coordinates of the minimum point and the point where the graph crosses the *y*-axis. (3 marks)
 - (ii) Write down an equation of the tangent to the graph of y = (x 5)(x 3) + 2at its vertex. (2 marks)
 - (c) Describe the geometrical transformation that maps the graph of $y = x^2$ onto the graph of y = (x 5)(x 3) + 2. (3 marks)
- 6 The curve with equation $y = 12x^2 19x 2x^3$ is sketched below.

The curve crosses the x-axis at the origin O, and the point A(2, -6) lies on the curve.

- (a) (i) Find the gradient of the curve with equation $y = 12x^2 19x 2x^3$ at the point A. (4 marks)
 - (ii) Hence find the equation of the normal to the curve at the point A, giving your answer in the form x + py + q = 0, where p and q are integers. (3 marks)

(b) (i) Find the value of
$$\int_0^2 (12x^2 - 19x - 2x^3) dx$$
. (5 marks)

(ii) Hence determine the area of the shaded region bounded by the curve and the line *OA*. (3 marks)

Turn over for the next question

Turn over 🕨

PMT

4

7 A circle with centre C has equation $x^2 + y^2 - 4x + 12y + 15 = 0$.

(a) Find:

	(i) the coordinates of C ;	(2 marks)		
	(ii) the radius of the circle.	(2 marks)		
(b)	Explain why the circle lies entirely below the x-axis.			
(c)	The point P with coordinates $(5, k)$ lies outside the circle.			
	(i) Show that $PC^2 = k^2 + 12k + 45$.	(2 marks)		
	(ii) Hence show that $k^2 + 12k + 20 > 0$.	(1 mark)		
	(iii) Find the possible values of k .	(4 marks)		

END OF QUESTIONS

Copyright $\ensuremath{\mathbb{C}}$ 2010 AQA and its licensors. All rights reserved.